3.333 \(\int \frac{x^{7/2}}{(b x^2+c x^4)^2} \, dx\)

Optimal. Leaf size=218 \[ -\frac{3 \log \left (-\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{8 \sqrt{2} b^{7/4} \sqrt [4]{c}}+\frac{3 \log \left (\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{8 \sqrt{2} b^{7/4} \sqrt [4]{c}}-\frac{3 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{4 \sqrt{2} b^{7/4} \sqrt [4]{c}}+\frac{3 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}+1\right )}{4 \sqrt{2} b^{7/4} \sqrt [4]{c}}+\frac{\sqrt{x}}{2 b \left (b+c x^2\right )} \]

[Out]

Sqrt[x]/(2*b*(b + c*x^2)) - (3*ArcTan[1 - (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)])/(4*Sqrt[2]*b^(7/4)*c^(1/4)) + (3
*ArcTan[1 + (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)])/(4*Sqrt[2]*b^(7/4)*c^(1/4)) - (3*Log[Sqrt[b] - Sqrt[2]*b^(1/4)
*c^(1/4)*Sqrt[x] + Sqrt[c]*x])/(8*Sqrt[2]*b^(7/4)*c^(1/4)) + (3*Log[Sqrt[b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x]
+ Sqrt[c]*x])/(8*Sqrt[2]*b^(7/4)*c^(1/4))

________________________________________________________________________________________

Rubi [A]  time = 0.169269, antiderivative size = 218, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 9, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.474, Rules used = {1584, 290, 329, 211, 1165, 628, 1162, 617, 204} \[ -\frac{3 \log \left (-\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{8 \sqrt{2} b^{7/4} \sqrt [4]{c}}+\frac{3 \log \left (\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{8 \sqrt{2} b^{7/4} \sqrt [4]{c}}-\frac{3 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{4 \sqrt{2} b^{7/4} \sqrt [4]{c}}+\frac{3 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}+1\right )}{4 \sqrt{2} b^{7/4} \sqrt [4]{c}}+\frac{\sqrt{x}}{2 b \left (b+c x^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[x^(7/2)/(b*x^2 + c*x^4)^2,x]

[Out]

Sqrt[x]/(2*b*(b + c*x^2)) - (3*ArcTan[1 - (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)])/(4*Sqrt[2]*b^(7/4)*c^(1/4)) + (3
*ArcTan[1 + (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)])/(4*Sqrt[2]*b^(7/4)*c^(1/4)) - (3*Log[Sqrt[b] - Sqrt[2]*b^(1/4)
*c^(1/4)*Sqrt[x] + Sqrt[c]*x])/(8*Sqrt[2]*b^(7/4)*c^(1/4)) + (3*Log[Sqrt[b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x]
+ Sqrt[c]*x])/(8*Sqrt[2]*b^(7/4)*c^(1/4))

Rule 1584

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(m + n*p)*(a + b*x^(q -
 p))^n, x] /; FreeQ[{a, b, m, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^{7/2}}{\left (b x^2+c x^4\right )^2} \, dx &=\int \frac{1}{\sqrt{x} \left (b+c x^2\right )^2} \, dx\\ &=\frac{\sqrt{x}}{2 b \left (b+c x^2\right )}+\frac{3 \int \frac{1}{\sqrt{x} \left (b+c x^2\right )} \, dx}{4 b}\\ &=\frac{\sqrt{x}}{2 b \left (b+c x^2\right )}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{b+c x^4} \, dx,x,\sqrt{x}\right )}{2 b}\\ &=\frac{\sqrt{x}}{2 b \left (b+c x^2\right )}+\frac{3 \operatorname{Subst}\left (\int \frac{\sqrt{b}-\sqrt{c} x^2}{b+c x^4} \, dx,x,\sqrt{x}\right )}{4 b^{3/2}}+\frac{3 \operatorname{Subst}\left (\int \frac{\sqrt{b}+\sqrt{c} x^2}{b+c x^4} \, dx,x,\sqrt{x}\right )}{4 b^{3/2}}\\ &=\frac{\sqrt{x}}{2 b \left (b+c x^2\right )}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{b}}{\sqrt{c}}-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt{x}\right )}{8 b^{3/2} \sqrt{c}}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{b}}{\sqrt{c}}+\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt{x}\right )}{8 b^{3/2} \sqrt{c}}-\frac{3 \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{b}}{\sqrt [4]{c}}+2 x}{-\frac{\sqrt{b}}{\sqrt{c}}-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{c}}-x^2} \, dx,x,\sqrt{x}\right )}{8 \sqrt{2} b^{7/4} \sqrt [4]{c}}-\frac{3 \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{b}}{\sqrt [4]{c}}-2 x}{-\frac{\sqrt{b}}{\sqrt{c}}+\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{c}}-x^2} \, dx,x,\sqrt{x}\right )}{8 \sqrt{2} b^{7/4} \sqrt [4]{c}}\\ &=\frac{\sqrt{x}}{2 b \left (b+c x^2\right )}-\frac{3 \log \left (\sqrt{b}-\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{c} x\right )}{8 \sqrt{2} b^{7/4} \sqrt [4]{c}}+\frac{3 \log \left (\sqrt{b}+\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{c} x\right )}{8 \sqrt{2} b^{7/4} \sqrt [4]{c}}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{4 \sqrt{2} b^{7/4} \sqrt [4]{c}}-\frac{3 \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{4 \sqrt{2} b^{7/4} \sqrt [4]{c}}\\ &=\frac{\sqrt{x}}{2 b \left (b+c x^2\right )}-\frac{3 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{4 \sqrt{2} b^{7/4} \sqrt [4]{c}}+\frac{3 \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{4 \sqrt{2} b^{7/4} \sqrt [4]{c}}-\frac{3 \log \left (\sqrt{b}-\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{c} x\right )}{8 \sqrt{2} b^{7/4} \sqrt [4]{c}}+\frac{3 \log \left (\sqrt{b}+\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{c} x\right )}{8 \sqrt{2} b^{7/4} \sqrt [4]{c}}\\ \end{align*}

Mathematica [A]  time = 0.111976, size = 199, normalized size = 0.91 \[ \frac{\frac{8 b^{3/4} \sqrt{x}}{b+c x^2}-\frac{3 \sqrt{2} \log \left (-\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{\sqrt [4]{c}}+\frac{3 \sqrt{2} \log \left (\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{\sqrt [4]{c}}-\frac{6 \sqrt{2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{\sqrt [4]{c}}+\frac{6 \sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}+1\right )}{\sqrt [4]{c}}}{16 b^{7/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(7/2)/(b*x^2 + c*x^4)^2,x]

[Out]

((8*b^(3/4)*Sqrt[x])/(b + c*x^2) - (6*Sqrt[2]*ArcTan[1 - (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)])/c^(1/4) + (6*Sqrt
[2]*ArcTan[1 + (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)])/c^(1/4) - (3*Sqrt[2]*Log[Sqrt[b] - Sqrt[2]*b^(1/4)*c^(1/4)*
Sqrt[x] + Sqrt[c]*x])/c^(1/4) + (3*Sqrt[2]*Log[Sqrt[b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x])/c^(1/4)
)/(16*b^(7/4))

________________________________________________________________________________________

Maple [A]  time = 0.055, size = 149, normalized size = 0.7 \begin{align*}{\frac{1}{2\,b \left ( c{x}^{2}+b \right ) }\sqrt{x}}+{\frac{3\,\sqrt{2}}{16\,{b}^{2}}\sqrt [4]{{\frac{b}{c}}}\ln \left ({ \left ( x+\sqrt [4]{{\frac{b}{c}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{b}{c}}} \right ) \left ( x-\sqrt [4]{{\frac{b}{c}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{b}{c}}} \right ) ^{-1}} \right ) }+{\frac{3\,\sqrt{2}}{8\,{b}^{2}}\sqrt [4]{{\frac{b}{c}}}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{b}{c}}}}}}+1 \right ) }+{\frac{3\,\sqrt{2}}{8\,{b}^{2}}\sqrt [4]{{\frac{b}{c}}}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{b}{c}}}}}}-1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(7/2)/(c*x^4+b*x^2)^2,x)

[Out]

1/2*x^(1/2)/b/(c*x^2+b)+3/16/b^2*(b/c)^(1/4)*2^(1/2)*ln((x+(b/c)^(1/4)*x^(1/2)*2^(1/2)+(b/c)^(1/2))/(x-(b/c)^(
1/4)*x^(1/2)*2^(1/2)+(b/c)^(1/2)))+3/8/b^2*(b/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(b/c)^(1/4)*x^(1/2)+1)+3/8/b^2*(
b/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(b/c)^(1/4)*x^(1/2)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(c*x^4+b*x^2)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.5859, size = 441, normalized size = 2.02 \begin{align*} \frac{12 \,{\left (b c x^{2} + b^{2}\right )} \left (-\frac{1}{b^{7} c}\right )^{\frac{1}{4}} \arctan \left (\sqrt{b^{4} \sqrt{-\frac{1}{b^{7} c}} + x} b^{5} c \left (-\frac{1}{b^{7} c}\right )^{\frac{3}{4}} - b^{5} c \sqrt{x} \left (-\frac{1}{b^{7} c}\right )^{\frac{3}{4}}\right ) + 3 \,{\left (b c x^{2} + b^{2}\right )} \left (-\frac{1}{b^{7} c}\right )^{\frac{1}{4}} \log \left (b^{2} \left (-\frac{1}{b^{7} c}\right )^{\frac{1}{4}} + \sqrt{x}\right ) - 3 \,{\left (b c x^{2} + b^{2}\right )} \left (-\frac{1}{b^{7} c}\right )^{\frac{1}{4}} \log \left (-b^{2} \left (-\frac{1}{b^{7} c}\right )^{\frac{1}{4}} + \sqrt{x}\right ) + 4 \, \sqrt{x}}{8 \,{\left (b c x^{2} + b^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(c*x^4+b*x^2)^2,x, algorithm="fricas")

[Out]

1/8*(12*(b*c*x^2 + b^2)*(-1/(b^7*c))^(1/4)*arctan(sqrt(b^4*sqrt(-1/(b^7*c)) + x)*b^5*c*(-1/(b^7*c))^(3/4) - b^
5*c*sqrt(x)*(-1/(b^7*c))^(3/4)) + 3*(b*c*x^2 + b^2)*(-1/(b^7*c))^(1/4)*log(b^2*(-1/(b^7*c))^(1/4) + sqrt(x)) -
 3*(b*c*x^2 + b^2)*(-1/(b^7*c))^(1/4)*log(-b^2*(-1/(b^7*c))^(1/4) + sqrt(x)) + 4*sqrt(x))/(b*c*x^2 + b^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(7/2)/(c*x**4+b*x**2)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.1578, size = 269, normalized size = 1.23 \begin{align*} \frac{3 \, \sqrt{2} \left (b c^{3}\right )^{\frac{1}{4}} \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{b}{c}\right )^{\frac{1}{4}} + 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{b}{c}\right )^{\frac{1}{4}}}\right )}{8 \, b^{2} c} + \frac{3 \, \sqrt{2} \left (b c^{3}\right )^{\frac{1}{4}} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{b}{c}\right )^{\frac{1}{4}} - 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{b}{c}\right )^{\frac{1}{4}}}\right )}{8 \, b^{2} c} + \frac{3 \, \sqrt{2} \left (b c^{3}\right )^{\frac{1}{4}} \log \left (\sqrt{2} \sqrt{x} \left (\frac{b}{c}\right )^{\frac{1}{4}} + x + \sqrt{\frac{b}{c}}\right )}{16 \, b^{2} c} - \frac{3 \, \sqrt{2} \left (b c^{3}\right )^{\frac{1}{4}} \log \left (-\sqrt{2} \sqrt{x} \left (\frac{b}{c}\right )^{\frac{1}{4}} + x + \sqrt{\frac{b}{c}}\right )}{16 \, b^{2} c} + \frac{\sqrt{x}}{2 \,{\left (c x^{2} + b\right )} b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(c*x^4+b*x^2)^2,x, algorithm="giac")

[Out]

3/8*sqrt(2)*(b*c^3)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) + 2*sqrt(x))/(b/c)^(1/4))/(b^2*c) + 3/8*sqrt
(2)*(b*c^3)^(1/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) - 2*sqrt(x))/(b/c)^(1/4))/(b^2*c) + 3/16*sqrt(2)*(b
*c^3)^(1/4)*log(sqrt(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/(b^2*c) - 3/16*sqrt(2)*(b*c^3)^(1/4)*log(-sqrt(2)
*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/(b^2*c) + 1/2*sqrt(x)/((c*x^2 + b)*b)